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Abstract

We analyze the propagation of a scalar �eld in multidimensional theories which

include kinetic corrections in the brane, as a prototype for gravitational interactions

in a four dimensional brane located in a (nearly) at extra dimensional bulk. We

regularize the theory by introducing an infrared cuto� given by the size of the extra

dimensions and a physical ultraviolet cuto� of the order of the fundamental Planck

scale in the higher dimensional theory. We show that, contrary to recent sugges-

tions, the radius of the extra dimensions cannot be arbitrarily large. Moreover, for

�nite radii, the gravitational e�ects localized on the brane can substantially alter

the phenomenology of collider and/or table-top gravitational experiments. This

phenomenology is dictated by the presence of a massless graviton, with standard

couplings to the matter �elds, and a massive graviton which couples to matter in

a much stronger way. While graviton KK modes lighter than the massive graviton

couple to matter in a standard way, the couplings to matter of the heavier KK

modes are strongly suppressed.



1 Introduction

The existence of large extra dimensions, of size much larger than the Planck length,

has been recently proposed by Arkani-Hamed, Dimopoulos and Dvali (ADD) [1] as an

alternative means of solving the hierarchy problem of the Standard Model (SM). It has

been argued that, if the SM �elds were localized in a four dimensional brane located in a

compact at spatial bulk of radius R, which allows the free propagation of gravitons, the

physical Planck scale associated with the gravity properties at distances much larger than

R will be given by M2
P l = M2+dRd, where M is the fundamental Planck scale and d is the

number of extra dimensions. For this mechanism to provide a solution of the hierarchy

problem, M should be on the order of a TeV. Since gravity will look (4 + d) dimensional

at distances much shorter than R, the compacti�cation radius cannot be larger than a

millimeter. While such a bound is inconsistent with a solution to the hierarchy problem

in the case d = 1, it is naturally ful�lled for d � 2. The smaller d, the larger becomes R

and, for d = 2, the predicted deviation of the gravity behavior is being tested in table-top

experiments [2, 3].

Since the fundamental scale M is of order a TeV, non-trivial modi�cations will also

appear in the ultraviolet regime of energies close to M . From a four dimensional point

of view, the ultraviolet e�ects will be associated with the emission of Kaluza-Klein (KK)

states, representing the propagation of the graviton in the extra dimensional bulk. Al-

though individual KK gravitons will couple very weakly to SM particles, the cumulative

e�ect of KK gravitons will lead to interactions which become strong at energy scales of

order M . For collider center-of-mass energies approaching M , graviton emission can be

observed as missing energy signatures, or as virtual e�ects that interfere with SM pro-

cesses [4]. Nonobservation of these collider e�ects places a lower bound on M of about a

TeV.

From the above considerations, it seems clear that, for a compact at bulk space, R

cannot be larger than a millimeter without producing gross deviations from four dimen-

sional gravity at macroscopic scales. This point of view has been recently challenged by

the authors of Ref. [5]. They show that, if d = 1 and R is taken to be in�nitely large, the

possible inclusion of a local four dimensional Einstein term in the brane (see also [6]) may

lead to short{distance behavior that resembles the usual four dimensional propagation of

gravitons. Moreover, in Ref. [7] it was argued that if the number of dimensions is larger

than �ve, d � 2, one obtains four dimensional behavior for the graviton at all scales.

However, for d � 2 this result is derived from expressions involving an ultraviolet diver-

gent contribution coming from the propagation of gravitons in the bulk, and therefore
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the case d � 2 deserves a more detailed analysis. This is particularly so since we are

considering a non-renormalizable theory with a physical ultraviolet cuto� which cannot

be larger than the (4 + d) dimensional Planck scale M , at which gravity interactions in

the extra dimensional bulk become strong.

In this paper we will introduce both an infrared (IR) and an ultraviolet (UV) regu-

larization. The IR regularization is implemented by means of a d dimensional torus with

common radius R. We introduce a physical UV cuto� � by truncating the number of

KK-modes at j~nj = �R=�, where ~n2 = n21 + � � �n2d. The case of (4 + d) dimensional

Minkowski space considered in Refs. [5, 7] will appear as the R!1 limit. In this limit

we will reproduce the results of Ref. [5] for the case of one extra dimension; moreover for

d � 2 we reproduce the results of Ref. [7] in the limit R ! 1 and � ! 1. However,

when we �x the UV cuto� to a natural physical value O(M), the results we obtain are

di�erent from those obtained in [7].

For the case of �nite radius (toroidal) extra dimensions the presence of brane gravi-

tational corrections could substantially modify the usual ADD scenario. In fact we shall

show that, depending on the strength of those corrections, either the collider or table-top

gravitational signatures can be substantially altered.

The outline of this paper is as follows. In section 2 we study the structure of the bulk

graviton propagator including the brane corrections for an arbitrary number of at extra

dimensions. In section 3 we consider the R ! 1 limit to compare with the results of

Refs. [5, 7]. In section 4 we consider the case of �nite radius and analyze the physical

features of the relevant momentum (or distance) regimes. Section 5 is devoted to the

phenomenology, including collider experiments and gravitational table-top experiments.

Finally our conclusions and outlook are presented in section 6 and some lengthy formulae

are exhibited in appendix A.

2 General propagator including the brane correction

We start with a (4 + d) dimensional theory with coordinates xI � (x�; yi), where x�

are the four dimensional space-time coordinates and 0 � yi � R, (i = 1; : : : ; d) those

of the compact space and assume a 3-brane embedded in the (4 + d) dimensional space

at y = 0. We shall assume that the brane thickness is small compared to the (4 + d)

dimensional Planck length, and model it by a delta function in the extra dimensions.

Following Refs. [5, 7], we shall consider, for simplicity, a single bulk scalar �eld �(xI),

instead of the more complicated tensor structure of a graviton, propagating in the (4+ d)
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dimensional space, with the action:

S4+d =

Z
d4xddy

�
M2+d@I�(x; y)@

I�(x; y) + �M2Æ(y)@��(x; 0)@
��(x; 0)

	
(2.1)

whereM is the higher dimensional Planck scale, �M is the coeÆcient of the brane-generated

correction, and we have scaled the � �eld to be dimensionless. Eq. (2.1) should be regarded

as the leading terms in a bulk+brane e�ective action for dynamics in a (4+d) dimensional

at space background (we are ignoring bulk+brane cosmological constant terms). The

e�ective action will be valid up to some physical ultraviolet cuto� �, where it matches

onto a more fundamental UV description. Since bulk gravity becomes strongly interacting

at the energy scale M , we expect that the case of interest is � not much larger than M .

The brane-generated kinetic term with coeÆcient �M could be induced from the cou-

pling between bulk gravity (the bulk scalar, in our simpli�ed treatment) and the brane

matter �elds. As noted in [5, 7], graviton vacuum polarization diagrams with brane mat-

ter loops will generically produce such a term. For example, if there are N heavy brane

particles of mass m, they will generate a contribution to �M on the order of Nm2 times

a loop factor [8]-[11]. Even in an e�ective theory with a cuto� � ' M , it is consistent

to imagine that �M may be much larger than M . This occurs in the example above if

N is large; it could also arise from dynamical sources such as coupling to brane or bulk

�elds which have large vacuum expectation values. Other possibilities include a large �M

related to physics of the fundamental UV theory. On the other hand �M �M introduces

a hierarchy problem, which would have to be addressed in a complete model.

We are interested in obtaining the Green function for the propagation of the scalar �eld

from a point in the brane to any point in the (4 + d) dimensional space. The equation

for the corresponding Green function, after making a Fourier transform over the four

dimensional space-time coordinates, is

[M2+d(p2 ��d) + �M2p2Æ(d)(yi)]Gd(p; yi) = Æ(d)(yi) (2.2)

where p2 = p21 + p22 + p23 + p24 is the four dimensional euclidean momentum and �d is the

laplacian operator in d dimensions.

The solution to Eq. (2.2) can be written as follows, [5, 7]:

Gd(p; yi) =
Dd(p; yi)

M2+d + �M2p2Dd(p; 0)
(2.3)

where Dd(p; yi) is the solution to the equation

(p2 ��d)Dd(p; yi) = Æ(d)(yi) : (2.4)
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A way to solve Eq. (2.4) is by Fourier series, since the extra dimensions are �nite.

We will only be interested in the behavior of the higher dimensional propagator on the

3-brane, that is for yi = 0. In this case the form for Dd(p; 0) is just the sum

Dd(p; 0) =
1

Rd

X
~n

1

p2 + ~n2�2

R2

(2.5)

where the vector ~n is de�ned as, ~n = (n1; : : : ; nd).

The Green function on the 3-brane Gd(p; 0) could also be obtained after integration of

the action (2.1) over the extra dimensional coordinates yi, which yields the four dimen-

sional Lagrangian for the KK-states �(~n),

L4 =M2+dRd
X
~n

�
@��

(~n)@��(~n) � ~n2

R2
�(~n)�(~n)

�
+ �M2

X
~n; ~m

@��
(~n)@��(~m) : (2.6)

The Green function on the 3-brane is the sum over four dimensional propagators. To

compute it we consider the �rst two terms in (2.6) as the unperturbed Lagrangian, giving

rise to the sum

Dd(p; 0)=M
2+d =

X
~n

(~n) (~n) �

and the last term as the perturbed Lagrangian, giving rise to the mixing

� p2 �M2 � (~n) (~m)

In this way the complete Green function Gd(p; 0) can be computed as

Gd(p; 0) � + + + � � �

and coincides with the expression obtained from (2.3) and (2.5).

We have computed the sum over the four dimensional propagators in the original �eld

basis, without explicitly diagonalizing the lagrangian (2.6). In the basis of canonically

normalized mass eigenstates for the lagrangian (2.6), Gd(p; 0) is just the sum over the

exact KK propagators, with mode dependent residues proportional to the square of the

coupling of the corresponding eigenstates to matter, whereas Dd(p; 0) is the sum over the

unperturbed KK propagators.

In principle the summation is over all KK modes, but since the action (2.1) is that of

an e�ective theory we should cuto� the sum when the mass of the modes are of order of
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the scale �, where � is the cuto� of the theory. That is we will sum up to a maximum

~n2max = (�R=�)2. We expect the cuto� � to be of the order of the characteristic scale of

the underlying higher dimensional theory.

For large values of R, as those that we will be interested in this paper, we can approx-

imate the summation in (2.5) by an integral over the ni. After subtracting the zero-mode

we can write (2.5) as,

Dd(p; 0) =
1

p2Rd

 
1 + 
d

Rdpd

�d

Z �

p

�
Rp

xd�1dx
1 + x2

!
(2.7)

where 
d =
2�d=2

2d�[ d
2
]
is the solid angle sustained in d dimensions for yi > 0. This expression

can be considered as the yi ! 0 limit of the bulk propagator

Dd(p; y) =
1

p2Rd

 
1 +

��
2

�d
2 Rdpd

�d

Z �

p

�
Rp

xd�1 Jd=2�1(xpy) dx

(xpy)d=2�1(1 + x2)

!
(2.8)

where the Jd=2�1 are Bessel functions and y � j~yj.
The explicit expressions for the Green functions Dd(p; 0) are given in Appendix A,

Eqs. (A.1) and (A.2), as well as their analytic continuation into the Minkowski space-

time, Dd(s), Eqs. (A.3) and (A.4). For the purpose of this paper we will �nd it more

convenient to work in Minkowski space-time so we will use, from here on,` the Green

functions Dd(s), as given by (A.3) and (A.4) as well as the corresponding Gd(s) functions

as de�ned by

Gd(s) =
Dd(s)

M2+d � �M2sDd(s)
: (2.9)

The cases where d = 1, 2 are particularly interesting, and they will be analyzed

separately in the following sections. The corresponding Green functions, within the ap-

proximation given in Eq. (2.7), can be written as:

G1(s) =
�1 + R

p
s

�

h
i �
2
� tanh�1

�p
s
�

�
+ tanh�1

�
�

R
p
s

�i
�
M3R+ �M2

�
s � �M2Rs

p
s

�

h
i �2 � tanh�1

�p
s
�

�
+ tanh�1

�
�

R
p
s

�i (2.10)

and

G2(s) =
�1 + R2 s

2�

h
i �2 +

1
2 log

�
�2

s
� 1
�
� 1

2 log
�
1� �2

R2s

�i
�
M4R2 + �M2

�
s� �M2R2s2

2�

�
i �2 +

1
2 log

�
�2

s
� 1
�� 1

2 log
�
1� �2

R2s

�� : (2.11)

We are now ready to study the behavior of the Green functions in the di�erent regimes

of values for R and, in particular, the impact on them of the presence of the brane

corrections proportional to �M .
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3 The limit of in�nite size extra dimensions

In this section we will analyze the behavior of the theory for extremely large values

of the radius R and, in particular, its behavior in the R ! 1 limit, that has been

recently proposed as an alternative way of localizing gravity in the 3-brane. We will make

a separate analysis of the �ve and six dimensional cases and then we will analyze the

general case for d > 2.

3.1 One extra dimension

The Green function (2.10) in the R!1 limit is given by,

G1(s) '
i �
2
� tanh�1

�p
s
�

�
�M3

p
s� �M2 s

h
i �
2
� tanh�1

�p
s
�

�i : (3.1)

In the region (
p
s � �), tanh�1(

p
s=�) ' ps=� and the Green function (3.1) behaves

approximately as,

G1(s) ' � 1

i 2M3
p
s+ �M2 s

: (3.2)

We reproduce in this way the propagator found in Ref. [5] for the case of one in�nite

at extra dimension. The physics described by (3.2) was already analyzed in Ref. [5].

For distances r � rc, where the critical distance is given by rc ' �M2=2M3 the linear

term (
p
s-term) in (3.2) dominates and the propagator behaves as a �ve dimensional one.

However, as already observed in Ref. [5], even for the most favorable case of �M 'MP l and

M ' 1 TeV, the critical distance is not large enough, rc ' 1015 cm, and enters in conict

with well tested Newtonian predictions. Moreover, for r� rc the quadratic term in (3.2)

(corresponding to a four dimensional theory with a propagator � �1= �M2s), dominates

but the theory is described by a scalar-tensor theory of gravity, with an additional scalar

attractive force corresponding to the �ve degrees of freedom of a 4D massive or 5D massless

graviton.

3.2 Two extra dimensions

A similar analysis can be done for the d = 2 case using the Green function (2.11). The

R!1 limit of (2.11) is,

G2(s) ' i � + log (�2=s)

4�M4 � �M2 s [i � + log (�2=s)]
: (3.3)
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Should we take the limit of (3.3) when �!1 we would obtain for the Green function

the behavior G2(s) � �1= �M2s, which, in the full gravity theory, would correspond to the

graviton propagator in a four dimensional tensor theory of gravity, reproducing the result

in Ref. [7]. However since, as we mentioned in the previous section, � = O(M), in the

limit s � M2 we cannot neglect the constant term in the denominator of (3.3) for all

momenta. As we did in the �ve dimensional case, we can compute the critical distance

on the brane rc such that for r � rc the constant term dominates in the denominator of

the Green function (3.3). In this region the Green function is logarithmic and as such it

corresponds to the propagator in a six dimensional theory. Only for distances r � rc the

quadratic term dominates, leading to the typical behaviour of the propagator in a four

dimensional theory.

The value of rc cannot be given analytically, as in the previous case. However a good

approximation is given by,

rc '
�M

M2

r
1

2�
log

�M

M
� 1

M2
; (3.4)

where we have use that � 'M . On the other hand, for values of s close toM2 the Green

function (3.3) can be approximated by,

G2(s) ' � 1
�M2

1 + i2
s�M2

2 + is 2
(3.5)

which describes the propagation of a resonance of mass M2 given by (3.4) and width

governed by

2 =
�

2

1

log �M=M
: (3.6)

Using the previous values, �M 'MP l and M ' 1 TeV, we obtain from Eq. (3.4) rc ' 5

mm, which corresponds to M2 ' 5 � 10�5 eV. This low value of rc is ruled out since

it would imply that the gravity propagator behaves as six dimensional for r > rc and

we know that for distances larger than sub-millimeter [2] gravity interactions are well

described by four dimensional Einstein gravity.

3.3 More than two extra dimensions

For more than two extra dimensions the analysis can be done in full generality using

Eqs. (A.3) and (A.4). The general propagator for R!1 is, for d odd,

Dd(s) =

d

�d
s
d
2
�1

2
4i �

2
� tanh�1

�p
s

�

�
+

(d�1)=2X
n=1

1

d� 2n

�
�2

s

� d
2
�n
3
5 (3.7)
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and for d even:

Dd(s) =

d

�d
s
d
2
�1

2
4i �

2
+
1

2
log

�
�2

s
� 1

�
+

d
2
�1X

n=1

1

d � 2n

�
�2

s

� d
2
�n
3
5 : (3.8)

In the regime s� �2 both formulae behave in the same way:

Dd(s) ' !d

h
i
�

2
(d� 2) s

d
2
�1 + �d�2

i
(3.9)

where !d for d > 2 is given by

!d =

d

(d� 2)�d
: (3.10)

Inserting the above equation into the full propagator we �nd:

Gd(s) ' � 1
�M2

1 + i �2 (d � 2) (
p
s=�)

d�2

s�M2
d + i �

2
(d� 2)s (

p
s=�)

d�2 (3.11)

whereMd is de�ned by

Md =
1p
!d

M2

�M
(M=�)d�2 ' 1p

!d

M2

�M
: (3.12)

where the last expression is valid for � 'M .

Again, as in the previous subsection, in the limit � ! 1 we would obtain for the

Green function the behavior G2(s) � �1= �M2s, corresponding to the propagator in a four

dimensional tensor theory of gravitation, reproducing the results of Ref. [7]. However,

since � = O(M), what we obtain from (3.11) corresponds to a massive resonance with a

massMd, width controlled by the function

d(s) =
�

2
(d� 2)

�p
s

M

�d�2
(3.13)

and propagator given by

Gd(s) ' � 1
�M2

s�M2
d � s2d � i dM2

d

(s�M2
d)
2
+ s22d

: (3.14)

Observe that, since we are assuming that s � M2, d(s) may be approximately written

as

d(s) ' �

2

(d� 2)��
Mp
s

�d�2
� 1

� (3.15)
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what allows to make connection with the two dimensional case.

Using again �M 'MP l and M ' 1 TeV, we get from (3.12)Md
>� 10�4 eV. A massive

graviton as in (3.14) is excluded, which leads to ruling out the scenarios [7] with in�nite

size extra dimensions in at space.

Thus, from the four dimensional point view, for d > 1 the theory has a mode, whose

mass has a non-vanishing value in the R ! 1 limit. As follows from Eq. (3.2), such a

mode is absent for d = 1, what is also consistent with the results in the case of �nite size

extra dimensions discussed in section 4.

4 The case of �nite size extra dimensions

In this section we will consider the modi�cation of the ADD scenario by the e�ect of

brane gravitational corrections. We shall describe the Green function in the region wherep
s � �, and we shall put emphasis on the case in which the cuto� of the e�ective

theory � is identi�ed with the higher dimensional Planck scale M . The physical (four

dimensional) Planck mass is de�ned as

M2
P l = Md+2Rd + �M2 ; (4.1)

and it is associated with the interaction strength of the massless graviton appearing in

the spectrum of the theory for any value of d. We shall always assume that �M2 is small

compared to the �rst term in Eq. (4.1), which proceeds from the dimensional reduction of

the higher dimensional theory1. We will be subsequently interested in the IR (R
p
s� 1)

and UV (R
p
s� 1) regions.

4.1 The IR region

In the IR region, R
p
s� 1, the Green function Dd(s) can be written as,

Dd(s) ' � 1

Rd s
+


d

(d� 2)�2Rd�2

"�
� R

�

�d�2
� 1

#
(4.2)

which is valid for any dimension d 2.

1 In the case �M2
�Md+2Rd the theory behaves like an ordinary theory of gravity in four dimensions,

apart from very weak corrections, which become weaker the closer �M is to the physical Planck scale MPl,

Eq. (4.1).
2The case d = 2 should be taken from (4.2) as a limit.
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The Green function Gd(s) behaves then as a massless particle with gravitational cou-

pling given by 1=M2
P l, which corresponds to Einstein gravity, plus a massive particle with

coupling � 1= �M2. In fact, we can write (2.9) as:

Gd(s) ' � 1

M2
P l s

� 1
�M2

�
1�

�M2

M2
P l

�
1

s�M2
d

(4.3)

with the massMd, for d � 2, given by,

M2
d =

�
M

�

�d�2
M2

!d

�
M2

�M2
+

1

(RM)d

�
=

�
M

�

�d�2
1

!d

�
1�

�M2

M2
P l

��1
M2

�M2
M2 : (4.4)

The second equality comes from (4.1) with !d given in Eq. (3.10) for d > 2, and

!2 =
1

2�
log

R �

�
: (4.5)

Furthermore, for d = 1 we obtain

M2
1 =

M2
P l

�M2

�2

R2
: (4.6)

Eq. (4.4) shows explicitly, for d > 2, the R independent behavior of the mass, in close

relation to the result for Md in the R ! 1 limit, obtained in section 3, Eq. (3.12).

Eq. (4.6) shows that such a pole does not appear in the infrared regime for d = 1. For

d = 2, the value of M2
2 is given by

M2
2 =

M2
P l

�M2

1

!2 R2
: (4.7)

and hence, from the expression of !2 (4.5), and excluding the unphysical case � � M ,

we obtain that, unless �M is of order MP l, such a state will also be absent in the infrared

regime.

Since for d = 1 the mass term (4.6) is, for �M2 � M2
P l, much larger than 1=R, the

second term in (4.3) corresponds, in the IR region, to a contact term in the propagator.

A similar e�ect is obtained for d = 2. For d > 2, instead, the second term in (4.3)

corresponds to a massive state coupled with a strength 1= �M2. This state will appear in the

physical spectrum of the theory wheneverMd is in the energy range under consideration,

namely wheneverMd < 1=R. This happens, for M ' �, when

�
1 �

�M2

M2
P l

� 1

2
� 1

d

�M >

r
1

!d

�
MP l

M

�2=d

M '
r

1

!d
10 32=d

�
1TeV

M

�2=d

M : (4.8)

As noticed above, the inequality (4.8) is only consistent with a coupling much stronger

than the gravitational one, i.e. �M � MP l, for d � 3. In this case the second term of
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(4.3) gives rise to a massive \condensate" with a mass given by Eq. (4.4) and a coupling

much stronger than the gravitational one. This leads to a very novel phenomenon: The

presence of two gravitons in the spectrum, with masses lower than the compacti�cation

scale 1=R. One of the gravitons becomes massless and mediates the regular gravitational

interactions. The second graviton, much more strongly coupled, could have a mass in the

range detectable by table-top gravitational experiments, as we will see in the next section.

4.2 The UV region

In the UV region, R
p
s� 1, the Green functions for d = 1; 2 can be taken directly from

Eqs. (2.10) and (2.11). In particular for d = 1 the Green function is,

G1(s) ' � R

i 2M2
P l

p
s+ �M2Rs

: (4.9)

For
p
s � r�1c (

p
s � r�1c ) the theory behaves four dimensional (�ve dimensional), and

the critical length is,

rc '
�M2R

2M2
P l

: (4.10)

Assuming now that M2
P l ' M3R, as discussed above, we obtain from (4.10) rc '

�M2=2M3, the same critical length we got in section 3 for the R!1 case. Moreover, for

d = 1 and �M � MP l, R ' 1015cm� (1 TeV=M)3. Therefore, unless M > 105 TeV, the

theory is ruled out by gravitational experiments, as in the ADD case.

For d = 2 the Green function is,

G2(s) ' R2 [i � + log (�2=s)]

4�M4
P l � �M2 sR2 [i � + log (�2=s)]

: (4.11)

Assuming again that M2
P l ' M4R2 we obtain from (4.11) the critical length (3.4) we

got in the R ! 1 case. Again, for values of s close to M2 the Green function (4.11)

can be approximated by one describing a resonance of massM2 and width controlled by

2, Eq. (3.6). Due to a di�erent behavior of the function D2(s) in the ultraviolet and

the infrared regimes, the function !2 used in the computation of M2, Eq. (4.4), in the

ultraviolet regime should take the form

!2 =
1

2�
log

�
�p
s

�
: (4.12)

and hence, for �M � MP l, M2 becomes independent of R in this regime, in agreement

with the in�nite radius case.
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For �M � MP l, M2 tends to be large enough, so that table-top experiments are not

sensitive to the state of massM2. However, they are sensitive to ordinary KK states with

masses � 1=R. Since for M = 1 TeV, the value of R, as �xed from (4.1), for �M � MP l,

is R ' 1mm, and present results from gravitational experiments are already sensitive to

sub-millimeter distances [2, 3], this case (similarly to ADD) demands values of M larger

than the TeV scale.

Finally, for d > 2 the Dd(s) function has the expression,

Dd(s) =

d

�d
s
d
2
�1
"
i
�

2
+

1

d � 2

�
�2

s

� d
2
�1#

(4.13)

and the full Green function can be written as,

Gd(s) ' � 1

M2
P l

1

s
� 1

�M2

�
1 �

�M2

M2
P l

�
s�M2

d + 2d s� i dM2
d

(M2
d � s)

2
+ 2d s

2
(4.14)

which corresponds to the propagation of the normal massless mode plus a massive (ef-

fective) resonance with a mass Md, given in Eq. (4.4), and a width controlled by the

function d(s) given by Eq. (3.13).

We observe that the pole structure of propagators in the UV-region is, as expected,

equivalent to that of the theory in the R !1 limit, that was studied in section 3. The

R!1 limit can be safely taken after the UV limit R
p
s� 1. This is a consequence of

the existence of a physical UV cuto�.

Finally notice that the result in the IR, Eq. (4.3), can be formally obtained from (4.14)

by taking d = 0. This behavior can be understood from Eqs. (A.3) and (A.4) because,

in the region R
p
s � 1 one can expand: tanh�1(�=R

p
s) = �i �=2 + O(Rps=�) and

log(1� �2=R2s) = i�+ log(�2=R2s� 1). Then the imaginary part of the Green functions

Dd(s) cancels in this region, in agreement with the results of the previous subsection.

5 Phenomenological implications

In this section we will study the modi�cation of ADD phenomenology by the presence of

the brane correction term, assuming � = M . The relevance of the presence of �M , and in

particular of the state with massMd, does depend on the relative value of Md.

� When Md
<� 1=R, because of its weak coupling the new state with mass Md and

coupling to matter � 1= �M2 is not expected to be detected in collider experiments

(see Eq. (4.8)) but, nevertheless has to be considered in gravitational table-top
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experiments. The reason is that its coupling can be much stronger than the Newton

constant, which governs the coupling of the ordinary KK states. On the other hand,

the coupling � of ordinary KK modes to matter is suppressed with respect to the

ADD coupling �ADD ' 1=M2
P l as, � ' (Md=m)4�ADD, where m is the mass of the

KK mode. Therefore, these states do not in general a�ect (or do it very mildly)

table-top experiments.

� When 1=R < Md
<� M , and d > 2, since the values of R are R � 1 mm, the

new state is too heavy to a�ect the gravitational table-top experiments. However,

depending on the value ofMd the coupling to matter� 1= �M2 may not be negligible

and that state can alter the collider phenomenology in a signi�cant way. On the

other hand, KK modes which are much lighter thanMd couple to matter as in the

ADD scenario.

5.1 Table-top gravitational phenomenology

We will assume in this subsection that Md
<� 1=R and see how the presence of the new

state with massMd can a�ect the table-top gravitational phenomenology.

The gravitational potential on the brane for distances r >�M�1
d can be written as:

V (r) = �GN
m1m2

r

�
1 + � e�r=�

�
(5.1)

where the parameters � and �, as de�ned by

� =
M2

P l

�M2
� 1; � =M�1

d ; (5.2)

do have a mild dependence on the number of extra dimensions d through !d in (4.4) and

the consistency condition (4.8). Using then (5.2) and (4.4) we can write,

(�+ 1)2

�

�
�

mm

�2

' !d

�
1TeV

M

�4

(5.3)

while inequality (4.8) and Eq. (5.3), imply for � the bounds

10�16
d�2
d

�
1TeV

M

� 2

d
+1

<
�

mm
<

p
!d

2

�
1TeV

M

�2

: (5.4)

In Fig. 1 we plot Eq. (5.3) for dimensions d = 3; 4; 5 and 6, solid curves from top

to bottom, respectively, and M = 1 TeV, and show, in the (j�j; �) plane the present

excluded region from table-top experiments, Ref. [2]. The dashed line represents the

projected experimental sensitivity of Ref. [3]. The crossing of solid and dashed curves will

impose some upper bounds on �M .
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Figure 1: Comparison with table-top experiments. Solid curves are Eq. (5.3) with

d = 3; 4; 5; 6, from top to bottom, respectively, and M = 1 TeV. The shaded region is

excluded from present experimental data, Ref. [2], while the dashed curve is the projected

experimental sensitivity of Ref. [3].

5.2 Collider phenomenology

We will assume in this subsection that d � 2 and �M >� M , so that for the energies accessi-

ble at present and future high-energy collider we can approximate the Green function as

one where the large number of KK modes behave like an \e�ective" resonance state, given

by Eqs. (4.14), with massMd and width controlled by d, Eq. (3.15). In the �M ! 0 limit

(i.e. s � M2
d) one recovers the ADD (constant) result. However for values of �M >� M

there will be important modi�cations of ADD collider phenomenology, both on KK gravi-

ton production and on virtual graviton mediated processes, that will be briey analyzed

in this section.

5.2.1 Production processes

As it was already emphasized in Ref. [1], processes with KK graviton production are an

important signature of extra dimensions. They appear as missing-energy events where a

particle (photon , quark q or gluon g) is produced and no observable particle is balancing

its transverse momentum.

Given the huge number of KK modes and, correspondingly, the smallness of their mass

di�erences, we can replace the production sum of KK modes by a continuous integration,
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and write the di�erential cross-section for inclusive graviton production (i.e. f �f ! X,

q�q! gX, qg! qX, gg ! gX) as

d�

dt
=

1

�

Z s

0

Im ~Gd(m
2)
d�m
dt

dm2 (5.5)

where
d�m
d t

is the di�erential cross-section for production of a single (canonically normal-

ized) KK mode with mass m and a coupling strength to matter 1=M2
P l, and ~Gd(m2) =

M2
P l Gd(m

2). The expression for Im ~Gd(m
2) is given by

Im ~Gd(m
2) =

M2
P l

�M2

�
1 �

�M2

M2
P l

�
d(m2)M2

d

(M2
d �m2)

2
+ 2d(m

2)m4
: (5.6)

From (5.6) we can see that for m2 �M2
d,

Im ~Gd(m
2) ' �

2


d

�d
(m2)

d=2�1
M2

P l

M2+d
= Im ~Gd(m

2)ADD : (5.7)

In this way the KK modes which are much lighter than Md couple to matter as in the

ADD scenario. Therefore, if
p
s < Md, the di�erential cross section for the reaction

e+e� ! X is

d�

d cos �

����p
s<Md

' �

M2

�p
s

M

�d

(1 + cos2 �) (5.8)

where � is the electromagnetic constant and � the scattering angle in the center-of-mass

system.

On the other hand, for m2 �M2
d the imaginary part of the Green function behaves

as,

Im ~Gd(m
2) '

�Md

m

�4

Im ~Gd(m
2)ADD (5.9)

and the corresponding KK modes couple to matter as � M4
d=m

4 times the ordinary

Newton constant.

To estimate the integral in (5.5) we have found, for
p
s >�Md, to a good accuracy,

d�

dt
' M2

P l

�M2

�
1 �

�M2

M2
P l

�
d�m(M2

d)

dt
(5.10)

where we have used the smallness of d and the property lim"!0 "=(x2 + "2) = �Æ(x). In

this way, the collective e�ect of all KK modes behaves as the production of a single sharp

resonance of massMd and coupling 1= �M2. This signature is very distinct from ADD. For
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example, for e+e� ! X, and neglecting terms of O(M2
d=s), the di�erential cross section

(5.10) can be written as [4]

d�

d cos �
' ��

�M2
(1 + cos2 �) : (5.11)

The modes with mass smaller and larger thanMd give a total contribution proportional

to 1=M2 (Md=M)d and 1= �M2 (s=M2)
d=2�1

(M2
d=s), respectively. These contributions are

sub-dominant for d > 2, while for d = 2 can be at most of order of the contribution of the

collective mode of massMd, Eq. (5.11). In this way the present bounds from this process

at LEP2 in ADD can be easily translated into the lower bound �M >� 5 TeV whenever

Md is kinematically accessible to this machine. IfMd is not energetically accessible, the

bound on �M disappears and it is replaced by a bound onM similar to that obtained in the

ADD case [4]. Of course much stronger bounds will be obtained from future accelerators.

5.2.2 Virtual exchange

The e�ective resonance of mass Md can also contribute to physical processes by a sin-

gle virtual exchange in the s-channel, along with the exchange of other standard model

particles. It can contribute sizeably to the cross-sections if the center-of-mass energy s is

close to Md. In that case its contribution to the cross-sections is proportional to

0 0.5 1 1.5 2
0

10

20

30

40

Figure 2: Plot of the function f(s=Md) for d = 3 and Md = 0:1M .

1
�M4M4

d

f(s=M2
d) (5.12)
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with

f(s=M2
d) =M4

d

(s�M2
d + 2d(s) s)

2
+ 2d(s)M4

dh
(M2

d � s)2 + 2d(s) s
2
i2 : (5.13)

At the resonance peak there is an enhancement, with respect to the (constant) ADD

contribution, as � �M2

M2

�d�2

while the distribution width

� �

2
(d � 2)

�Md

M

�d�2

is essentially governed by the ratio Md=M . An example of the resonance distribution is

given in Fig. 2, where the function f(s=Md) is plotted for the case Md=M = 0:1 and

d = 3.

6 Conclusions

This paper deals with the e�ect of kinetic brane gravitational corrections on extra di-

mensional scenarios. These corrections can be induced by interactions of bulk gravitons

with matter localized on the brane and their size is not protected by any four dimensional

symmetry acting on the brane. To avoid the complication inherent to the tensor struc-

ture of the higher dimensional graviton we have worked out a prototype model with a

simple scalar �eld propagating in the bulk of the extra dimensions. This work was partly

motivated by the recent and interesting claim that for the case of two (or more) in�nite

size at extra dimensions kinetic brane corrections trigger higher dimensional gravitons

to be localized on the brane. Moreover, for �nite size radius we also expect kinetic brane

gravitational corrections to substantially modify the usual picture initially introduced by

Arkani-Hamed, Dimopoulos and Dvali as an alternative solution to the hierarchy problem

and, in particular, its implications on collider phenomenology and table-top gravitational

experiments.

We have endowed the theory with both an IR and an UV regularization. The IR

regularization is implemented by a d dimensional torus with a common radius R. The

in�nite size can then be reached in the R!1 limit. The UV regularization is provided

by a physical UV cuto� �. Since the higher dimensional gravitational theory is an e�ective

one, with a physical cuto� of the order of the higher dimensional Planck scale, M , the
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cuto� � is restricted to be � M , or even less if the brane is fat, a possibility that, for

simplicity, we are not considering.

For the case of in�nite size extra dimensions, R ! 1, were we allowed to take the

� ! 1 limit, we would recover the results of Refs. [5, 7]. However, as � <� M , as we

pointed out above, our results for in�nite size extra dimensions do not lead to the existence

of tensor gravity localized on the brane but, instead, lead in general to a massive graviton.

To summarize, in the absence of a quantum �eld theory of gravity in higher dimensions,

the existence of a physical UV cuto� prevents localization of tensor gravity on the brane

in the presence of in�nite size extra dimensions.

For the case of �nite extra dimensions, kinetic brane gravitational corrections induce

deep modi�cations on the ADD scenario. In particular the emergence of a \collective"

state (made out of an \in�nite" number of KK modes) with a mass Md � M2= �M and

an e�ective coupling Ge� � 1= �M2, where �M is the brane correction. For Md
<� 1=R,

this state can be detected in table-top gravitational experiments, while ADD collider

phenomenology is deeply modi�ed since KK gravitons become unobservable in high-energy

colliders. On the other hand, for 1=R <�Md
<� M , table-top gravitational experiments are

blind to the new state and so table-top gravitational phenomenology remains essentially

unchanged. On the other hand the new resonance can be produced on-shell at high-energy

colliders and then also modify the ADD phenomenology.
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A Appendix

The integral (2.7) can be written in general for even and odd values of d.

� For d odd:
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Dd(p; 0) =
1

p2Rd

(
1 + 
d

Rdpd

�d

"
(�1)(d�1)=2

�
arctan

�
�

p

�
� arctan

�
�

Rp

��

+

(d�1)=2X
n=1

(�1)n�1
d� 2n

 �
�

p

�d�2n
�
�

�

Rp

�d�2n!35
9=
; : (A.1)

� For d even:

Dd(p; 0) =
1

p2Rd

(
1 + 
d

Rdpd

�d

"
(�1)d=2�11

2

�
log

�
1 +

�2

p2

�
� log

�
1 +

�2

R2 p2

��

+

d=2�1X
n=1

(�1)n�1
d� 2n

 �
�

p

�d�2n
�
�

�

Rp

�d�2n!35
9=
; : (A.2)

The analytic continuation of the function Dd(p; 0) into Minkowski space-time, Dd(s),

can be done by simply replacing in (A.1) and (A.2) p ! �ips and using the property,

arctan(ix) = i tanh�1(x). The result can be written as:

� For d odd:

Dd(s) =
1

sRd

(
�1 + 
d

Rd

�d
sd=2

"
i
�

2
� tanh�1

�p
s

�

�
+ tanh�1

�
�

R
p
s

�

+

(d�1)=2X
n=1

1

d � 2n

 �
�2

s

� d
2
�n
�
�

�2

R2 s

�d
2
�n!35

9=
; : (A.3)

� For d even:

Dd(s) =
1

sRd

(
�1 + 
d

Rd

�d
sd=2

"
i
�

2
+
1

2
log

�
�2

s
� 1

�
� 1

2
log

�
1� �2

R2 s

�

+

d
2
�1X

n=1

1

d� 2n

 �
�2

s

� d
2
�n
�
�

�2

R2 s

�d
2
�n!35

9=
; : (A.4)
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The imaginary part proportional to �=2 in Eqs. (A.3) and (A.4) come from the resonant

production of a single KK mode with square mass equal to s while the real part comes

from the summation over non-resonant states.

Substituting the functions Dd(p; 0), as given by (A.1) or (A.2), and Dd(s),as given

by (A.3) or (A.4), into Eq. (2.3) provides the Green function Gd(p; 0), and its analytic

continuation into the Minkowski space-time Gd(s), for the bulk scalars.
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